Exam Seat No:\_\_\_\_

## C.U.SHAH UNIVERSITY Summer Examination-2017

## Subject Name: Topology

| Subject Code: 5 | SC01TOP1        | Branch: M.Sc. (Mathematics) |           |  |
|-----------------|-----------------|-----------------------------|-----------|--|
| Semester: 1     | Date:28/03/2017 | Time:10:30 To 01:30         | Marks: 70 |  |

## Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

| Q-1 |    |    | Attempt the Following questions                                                                                                                                                                                                                                                                                                                                                               | (07)         |
|-----|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     |    | a. | Define:Topological space.                                                                                                                                                                                                                                                                                                                                                                     | (01)         |
|     |    | b. | Define: Projection map.                                                                                                                                                                                                                                                                                                                                                                       | (01)         |
|     |    | c. | Define: Compact space.                                                                                                                                                                                                                                                                                                                                                                        | (01)         |
|     |    | d. | Define: Locally compact space.                                                                                                                                                                                                                                                                                                                                                                | (01)         |
|     |    | e. | Define: Interior of set.                                                                                                                                                                                                                                                                                                                                                                      | (01)         |
|     |    | f. | Give an example of $T_1$ space which is not $T_2$ .                                                                                                                                                                                                                                                                                                                                           | (02)         |
| Q-2 | a) |    | Attempt all questions<br>Define closure of a set. Let <i>A</i> be a subset of topological space <i>X</i> and <i>A</i> <sup>'</sup> be the set<br>of all limit points of <i>A</i> . Then prove that $\overline{A} = A \cup A'$ .                                                                                                                                                               | (14)<br>(05) |
|     | b) |    | State and prove sequence lemma.                                                                                                                                                                                                                                                                                                                                                               | (05)         |
|     | c) |    | State and prove pasting Lemma.                                                                                                                                                                                                                                                                                                                                                                | (04)         |
|     |    |    | OR                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Q-2 | a) |    | Attempt all questions<br>Let $\mathcal{B}$ and $\mathcal{B}'$ be bases for the topology $\tau$ and $\tau'$ respectively on $X$ . Then prove that<br>the following are equivalent:<br>(i) $\tau'$ is finer than $\tau$<br>(ii) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing $x$ there is a basis<br>element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$ . | (14)<br>(05) |
|     | b) |    | If $\mathcal{B}$ is a basis for the topology of X then prove that the collection<br>$\mathcal{B}_Y = \{B \cap Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.                                                                                                                                                                                                          | (05)         |
|     | c) |    | Let Y be a subspace of $\overline{X}$ . Let A be a subset of Y and $\overline{A}$ denote the closure of A in X. Then prove that the closure of A in Y is $\overline{A} \cap Y$ .                                                                                                                                                                                                              | (04)         |



| Q-3 | a) |    | Attempt all questions<br>Let X and Y be topological spaces and $f: X \to Y$ then prove that following are<br>equivalent<br>(i) f is continuous.<br>(ii) For every subset A of X, $f(\overline{A}) \subseteq \overline{f(A)}$ .<br>(iii) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.<br>(iv) For each $x \in X$ each neighborhood V of $f(x)$ , there is a neighborhood U of<br>x such that $f(U) \subset V$ . | (14)<br>(08) |
|-----|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     | b) |    | If $(X, \tau)$ be a topological space and $A, B \subset X$ then prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ .<br>Is it true $\overline{A \cap B} = \overline{A} \cap \overline{B}$ ? Justify your answer.                                                                                                                                                                                                    | (04)         |
|     | c) |    | State finite intersection property. OR                                                                                                                                                                                                                                                                                                                                                                                             | (02)         |
| Q-3 | a) |    | Let $f: A \to X \times Y$ be a given by the equation $f(a) = (f_1(a), f_2(a))$ . Then prove that $f$ is continuous if and only if the functions $f_1: A \to X$ and $f_2: A \to Y$ are continuous.                                                                                                                                                                                                                                  | (06)         |
|     | b) |    | Let $f : X \to Y$ . If the function $f$ is continuous then prove that for every convergent sequence $x_n \to x$ in $X$ , the sequence $f(x_n)$ converges to $f(x)$ . The converse holds if $X$ is metrizable.                                                                                                                                                                                                                      | (05)         |
|     | c) |    | Let <i>X</i> , <i>Y</i> , <i>Z</i> be topological spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous functions then prove that $gof: X \to Z$ is continuous.                                                                                                                                                                                                                                                                  | (03)         |
|     |    |    | SECTION – II                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Q-4 |    |    | Attempt the Following questions                                                                                                                                                                                                                                                                                                                                                                                                    | (07)         |
|     |    | a. | Is discrete topological space a $T_1$ space?                                                                                                                                                                                                                                                                                                                                                                                       | (01)         |
|     |    | b. | Define: Homeomorphism.                                                                                                                                                                                                                                                                                                                                                                                                             | (01)         |
|     |    | c. | Define: Normal space                                                                                                                                                                                                                                                                                                                                                                                                               | (01)         |
|     |    | d. | Define: Separable space.                                                                                                                                                                                                                                                                                                                                                                                                           | (01)         |
|     |    | e. | Define: Disconnected topological space.                                                                                                                                                                                                                                                                                                                                                                                            | (01)         |
|     |    | Ι. | State Tychonoff theorem.                                                                                                                                                                                                                                                                                                                                                                                                           | (02)         |
| Q-5 | a) |    | Attempt all questions<br>Prove that every closed subspace of a compact space is compact.                                                                                                                                                                                                                                                                                                                                           | (14)<br>(05) |
|     | b) |    | Prove that every metrizable space is normal                                                                                                                                                                                                                                                                                                                                                                                        | (05)         |
|     | c) |    | Give an example of compact space which is not Hausdorff<br>OR                                                                                                                                                                                                                                                                                                                                                                      | (04)         |
| Q-5 | a) |    | Prove that the image of a connected space under a continuous map is connected.                                                                                                                                                                                                                                                                                                                                                     | (05)         |
|     | b) |    | Prove that every compact subspace of $T_2$ space is closed.                                                                                                                                                                                                                                                                                                                                                                        | (05)         |
|     | c) |    | Show that every compact subspace of a metric space is bounded.                                                                                                                                                                                                                                                                                                                                                                     | (04)         |
| Q-6 | a) |    | Attempt all questions<br>Prove that closed subspace of a locally compact space is locally compact.                                                                                                                                                                                                                                                                                                                                 | (14)<br>(05) |



|     | b) | Prove that every compact $T_2$ space is normal.                                        | (05) |
|-----|----|----------------------------------------------------------------------------------------|------|
|     | c) | Prove that the continuous image of a sequentially compact set is sequentially compact. | (04) |
|     |    | OR                                                                                     |      |
| Q-6 | a) | State and prove Urysohn's Lemma                                                        | (14) |

